|
Atomistry » Selenium » Chemical Properties | ||
Atomistry » Selenium » Chemical Properties » Hydrogen Selenide » Selenium Fluorides » Selenium Monochloride » Selenium Tetrachloride » Selenium Monobromide » Selenium Tetrabromide » Selenium Chlorobromides » Selenium Oxyfluoride » Selenium Oxychloride » Sulphur Selenium Oxytetrachloride » Selenium Oxybromide » Chloroselenic Acid » Selenium Dioxide » Selenious Acid » Selenium Trioxide » Selenic Acid » Selenates » Perselenic Acid » Selenium Sulphoxide » Selenotrithionic Acid » Diselenotrithionic Acid » Selenopentathionic Acid » Selenium Nitride » Nitrosylselenic Acid » Phosphorus Subselenide » Phosphorus Monoselenide » Tetraphosphorus Triselenide » Phosphorus Triselenide » Phosphorus Pentaselenide » Phosphorus Chloroselenide » Selenophosphates and Oxyselenophosphates » Carbon Diselenide » Carbon Subselenides » Carbon Oxyselenide » Carbon Sulphidoselenide » Cyanogen Monoselenide » Cyanogen Diselenide or Selenocyanogen » Cyanogen Triselenide » Selenocyanic Acid » Ammonium Selenocyanate » Caesium Triselenocyanate » Copper Selenocyanate » Lead Selenocyanate » Magnesium Selenocyanate » Mercurous Selenocyanate » Mercuric Selenocyanate » Potassium Selenocyanate » Silver Selenocyanate » Sodium Selenocyanate » Zinc Selenocyanate » Silicon Selenide » |
Chemical Properties of Selenium
In its general chemical behaviour, selenium occupies an intermediate position with respect to sulphur and tellurium. It combines directly with many elements, e.g. oxygen, hydrogen, fluorine, chlorine, bromine and most metals. Details of some of its compounds will be given later, whilst descriptions of others will be found under the heading of the companion element in other volumes of this series. In the molten condition selenium is partially or completely miscible with many metals, e.g. antimony, lead, copper, bismuth, silver and gold, the fused mass constituting a mixture of the metallic selenide and the element present in excess. Antimony thus yields selenides of compositions Sb2Se3 and SbSe, bismuth similarly gives the selenides Bi2Se3 and BiSe, copper forms cuprous selenide, Cu2Se, and silver the selenide Ag2Se. By completely fusing selenium with sodium in an atmosphere of hydrogen the existence of a series of selenides Na2Se, Na2Se2, Na2Se3, Na2Se4 and Na2Se6, analogous to the sulphides and polysulphides, has been shown. Selenium combines with sodium or potassium dissolved in liquid ammonia, producing the monoselenide Na2Se or K2Se, or the tetraselenide Na2Se4 or K2Se4, according to the relative proportions of the two elements present.
Selenium reduces hot aqueous solutions of silver or gold salts with the formation of silver selenide or metallic gold, respectively. In the case of silver salts the reaction corresponds with the equation: 4AgNO3 + 3Se + 3H2O = 2Ag2Se + H2SeO3 + 4HNO3. The element is unaffected by water, but in a fine state of division hydrogen peroxide oxidises it to selenic acid. Ozone in the presence of water gives a similar result. Selenium is soluble in sulphuric acid, forming a green solution which, in the case of the "metallic" form, probably contains a compound of composition SO3Se, and in the case of the red amorphous variety, a polymeric form of this compound. The presence of selenium does not affect the electrical conductivity of sulphuric acid. Dilute aqueous potassium hydroxide dissolves the red variety, producing a solution which probably contains polyselenides; in the presence of sodium hydrosulphite, however, only sodium selenide, Na2Se, is obtained. When selenium is heated with a metallic oxide or carbonate, a mixture of selenide and selenite is commonly obtained. At high temperatures selenium is able to displace sulphur partially from sulphides such as copper sulphide and silver sulphide, the effect probably being due to selenium being less volatile than sulphur. At ordinary temperatures selenium has practically no action on thionyl chloride, but when heated in thionyl chloride vapour selenium tetrachloride is formed according to the equation: Se + 2SOCl2 = SeCl4 + S + SO2. Sulphuryl chloride, on the other hand, is attacked by selenium at ordinary temperatures, selenium tetrachloride again being formed: Se + 2SO2Cl2 = 2SO2 + SeCl4. Pyrosulphuryl chloride, S2O5Cl2, converts selenium into a colourless crystalline compound, SeSO3Cl4 or SeCl4.SO3, generally known as sulphur-selenium oxytetrachloride, which melts at 165° C. and boils at 185° C., and which can also be obtained by the combination of its constituents, selenium tetrachloride and sulphur trioxide. |
Last articlesZn in 9JYWZn in 9IR4 Zn in 9IR3 Zn in 9GMX Zn in 9GMW Zn in 9JEJ Zn in 9ERF Zn in 9ERE Zn in 9EGV Zn in 9EGW |
© Copyright 2008-2020 by atomistry.com | ||
Home | Site Map | Copyright | Contact us | Privacy |